Staphylococcus schweitzeri—An Emerging One Health Pathogen?

Author:

Akoua-Koffi Chantal,Kacou N’Douba Adèle,Djaman Joseph Allico,Herrmann MathiasORCID,Schaumburg FriederORCID,Niemann SilkeORCID

Abstract

The Staphylococcus aureus-related complex is formed by the Staphylococcus aureus, Staphylococcus schweitzeri, Staphylococcus argenteus, Staphylococcus roterodami and Staphylococcus singaporensis. Within this complex, S. schweitzeri is the only species mainly found in African wildlife, but it is rarely detected as a colonizer in humans or as a contaminant of fomites. The few detections in humans are most likely spillover events after contact with wildlife. However, since S. schweitzeri can be misidentified as S. aureus using culture-based routine techniques, it is likely that S. schweitzeri is under-reported in humans. The low number of isolates in humans, though, is consistent with the fact that the pathogen has typical animal adaptation characteristics (e.g., growth kinetics, lack of immune evasion cluster and antimicrobial resistance); however, evidence from selected in vitro assays (e.g., host cell invasion, cell activation, cytotoxicity) indicate that S. schweitzeri might be as virulent as S. aureus. In this case, contact with animals colonized with S. schweitzeri could constitute a risk for zoonotic infections. With respect to antimicrobial resistance, all described isolates were found to be susceptible to all antibiotics tested, and so far no data on the development of spontaneous resistance or the acquisition of resistance genes such the mecA/mecC cassette are available. In summary, general knowledge about this pathogen, specifically on the potential threat it may incur to human and animal health, is still very poor. In this review article, we compile the present state of scientific research, and identify the knowledge gaps that need to be filled in order to reliably assess S. schweitzeri as an organism with global One Health implications.

Funder

German Federal Ministry of Education and Research

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3