Abstract
Decomposers play an important role in the biogeochemical cycle. Protaetia brevitarsis larvae (PBLs) can transform wastes into frass rich in humic acid (HA) and microorganisms, which may increase the disease resistance of plants and promote plant growth. Beyond HA, the microorganisms may also contribute to the biostimulant activity. To address this hypothesis, we investigated the potential microbial community in the PBL frass samples and elucidated their functions of disease resistance and plant growth promotion. High-throughput sequencing analysis of four PBL-relevant samples showed that their frass can influence the microbial community of the surrounding environment. Further analysis showed that there were many microorganisms beneficial to agriculture, such as Bacillus. Therefore, culturable Bacillus microbes were isolated from frass, and 16S rDNA gene analysis showed that Bacillus subtilis was the dominant species. In addition, some Bacillus microorganisms isolated from the PBL frass had antibacterial activities against pathogenic fungi. The plant growth promotion pot experiment also proved that some strains promote plant growth. In conclusion, this study demonstrated that the microorganisms in the PBL frass are conducive to colonizing the surrounding organic matrix, which will help beneficial microbes to increase the disease resistance of plants and promote plant growth.
Subject
Virology,Microbiology (medical),Microbiology
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献