Cryptic Diversity in Paramecium multimicronucleatum Revealed with a Polyphasic Approach

Author:

Melekhin MaksimORCID,Yakovleva YuliaORCID,Lebedeva Natalia,Nekrasova Irina,Nikitashina Liubov,Castelli Michele,Mayén-Estrada Rosaura,Romanovich Anna E.,Petroni Giulio,Potekhin AlexeyORCID

Abstract

Paramecium (Ciliophora) systematics is well studied, and about twenty morphological species have been described. The morphological species may include several genetic species. However, molecular phylogenetic analyses revealed that the species diversity within Paramecium could be even higher and has raised a problem of cryptic species whose statuses remain uncertain. In the present study, we provide the morphological and molecular characterization of two novel Paramecium species. While Paramecium lynni n. sp., although morphologically similar to P. multimicronucleatum, is phylogenetically well separated from all other Paramecium species, Paramecium fokini n. sp. appears to be a cryptic sister species to P. multimicronucleatum. The latter two species can be distinguished only by molecular methods. The number and structure of micronuclei, traditionally utilized to discriminate species in Paramecium, vary not only between but also within each of the three studied species and, thus, cannot be considered a reliable feature for species identification. The geographic distribution of the P. multimicronucleatum and P. fokini n. sp. strains do not show defined patterns, still leaving space for a role of the geographic factor in initial speciation in Paramecium. Future findings of new Paramecium species can be predicted from the molecular data, while morphological characteristics appear to be unstable and overlapping at least in some species.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Reference79 articles.

1. Ecology;Landis,1988

2.  Paramecium aurelia;Sonneborn,1974

3. Maintaining Clonal Paramecium tetraurelia Cell Lines of Controlled Age through Daily Reisolation

4. The Biology of Paramecium;Wichterman,1986

5. The Paramecium aurelia Complex of Fourteen Sibling Species

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3