Abstract
The ocean is an excellent source for new biocatalysts due to the tremendous genetic diversity of marine microorganisms, and it may contribute to the development of sustainable industrial processes. A marine bacterium was isolated and selected for the conversion of benzaldehyde to benzyl alcohol, which is an important chemical employed as a precursor for producing esters for cosmetics and other industries. Enzymatic production routes are of interest for sustainable processes. To overcome benzaldehyde low water solubility, DMSO was used as a biocompatible cosolvent up to a concentration of 10% (v/v). A two-phase system with n-hexane, n-heptane, or n-hexadecane as organic phase allowed at least a 44% higher relative conversion of benzaldehyde than the aqueous system, and allowed higher initial substrate concentrations. Cell performance decreased with increasing product concentration but immobilization of cells in alginate improved four-fold the robustness of the biocatalyst: free and immobilized cells were inhibited at concentrations of benzyl alcohol of 5 and 20 mM, respectively. Scaling up to a 100 mL stirred reactor, using a fed-batch approach, enabled a 1.5-fold increase in benzyl alcohol productivity when compared with batch mode. However, product accumulation in the reactor hindered the conversion. The use of a continuous flow reactor packed with immobilized cells enabled a 9.5-fold increase in productivity when compared with the fed-batch stirred reactor system.
Funder
European Union
Fundação para a Ciência e a Tecnologia
Subject
Virology,Microbiology (medical),Microbiology
Reference73 articles.
1. Solvents;Stoye,1998
2. Fragrance material review on benzyl alcohol
3. Re-evaluation of benzyl alcohol (E1519) as food additive;Younes;EFSA J.,2019
4. Benzyl Alcohol;Corcoran,2014
5. Efficient Enzymatic Preparation of Flavor Esters in Water
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献