Subspecies Classification and Comparative Genomic Analysis of Lactobacillus kefiranofaciens HL1 and M1 for Potential Niche-Specific Genes and Pathways

Author:

Wang Sheng-YaoORCID,Chen Yen-PoORCID,Huang Ren-Feng,Wu Yi-Lu,Ho Shang-Tse,Li Kuan-YiORCID,Watanabe KoichiORCID,Chen Ming-JuORCID

Abstract

(1) Background: Strains HL1 and M1, isolated from kefir grains, have been tentatively identified, based on their partial 16S rRNA gene sequences, as Lactobacillus kefiranofaciens. The two strains demonstrated different health benefits. Therefore, not only the genetic factors exerting diverse functionalities in different L. kefiranofaciens strains, but also the potential niche-specific genes and pathways among the L. kefiranofaciens strains, should be identified. (2) Methods: Phenotypic and genotypic approaches were employed to identify strains HL1 and M1 at the subspecies level. For the further characterization of the probiotic properties of both strains, comparative genomic analyses were used. (3) Results: Both strains were identified as L. kefiranofaciens subsp. kefirgranum. According to the COG function category, dTDP-rhamnose and rhamnose-containing glycans were specifically detected in the L. kefiranofaciens subsp. Kefirgranum genomes. Three unique genes (epsI, epsJ, and epsK) encoding glycosyltransferase in the EPS gene cluster, and the ImpB/MucB/SamB family protein encoding gene were found in HL1 and M1. The specific ability to degrade arginine via the ADI pathway was found in HL1. The presence of the complete glycogen metabolism (glg) operon in the L. kefiranofaciens strains suggested the importance of glycogen synthesis to enable colonization in kefir grains and extend survival under environmental stresses. (4) Conclusions: The obtained novel information on the potential genes and pathways for polysaccharide synthesis and other functionalities in our HL1 and M1 strains could be applied for further functionality predictions for potential probiotic screening.

Funder

the Ministry of Science and Technology of Taiwan

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3