Rhizosphere Signaling: Insights into Plant–Rhizomicrobiome Interactions for Sustainable Agronomy

Author:

Jamil Fatima,Mukhtar HamidORCID,Fouillaud MireilleORCID,Dufossé LaurentORCID

Abstract

Rhizospheric plant–microbe interactions have dynamic importance in sustainable agriculture systems that have a reduced reliance on agrochemicals. Rhizosphere signaling focuses on the interactions between plants and the surrounding symbiotic microorganisms that facilitate the development of rhizobiome diversity, which is beneficial for plant productivity. Plant–microbe communication comprises intricate systems that modulate local and systemic defense mechanisms to mitigate environmental stresses. This review deciphers insights into how the exudation of plant secondary metabolites can shape the functions and diversity of the root microbiome. It also elaborates on how rhizosphere interactions influence plant growth, regulate plant immunity against phytopathogens, and prime the plant for protection against biotic and abiotic stresses, along with some recent well-reported examples. A holistic understanding of these interactions can help in the development of tailored microbial inoculants for enhanced plant growth and targeted disease suppression.

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3