Abstract
(1) Background: MALDI-TOF mass spectrometry (MS) is the gold standard for microbial fingerprinting, however, for phylogenetically closely related species, the resolution power drops down to the genus level. In this study, we analyzed MALDI-TOF spectra from 44 strains of B. melitensis, B. suis and B. abortus to identify the optimal classification method within popular supervised and unsupervised machine learning (ML) algorithms. (2) Methods: A consensus feature selection strategy was applied to pinpoint from among the 500 MS features those that yielded the best ML model and that may play a role in species differentiation. Unsupervised k-means and hierarchical agglomerative clustering were evaluated using the silhouette coefficient, while the supervised classifiers Random Forest, Support Vector Machine, Neural Network, and Multinomial Logistic Regression were explored in a fine-tuning manner using nested k-fold cross validation (CV) with a feature reduction step between the two CV loops. (3) Results: Sixteen differentially expressed peaks were identified and used to feed ML classifiers. Unsupervised and optimized supervised models displayed excellent predictive performances with 100% accuracy. The suitability of the consensus feature selection strategy for learning system accuracy was shown. (4) Conclusion: A meaningful ML approach is here introduced, to enhance Brucella spp. classification using MALDI-TOF MS data.
Subject
Virology,Microbiology (medical),Microbiology
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献