Abstract
Sulfamethoxazole (SMX) is a widespread and persistent pollutant in the environment. Although the screening and analysis of SMX-degrading bacteria have been documented, the interaction mechanisms of functional microorganisms are still poorly understood. This study constructed a consortium with strain YL1 and YL2 supplied with SMX as the sole carbon and energy source. The coexisting mechanism and the removal of SMX of the consortium were investigated. The total oxidizable carbon (TOC) removal rate of the combined bacterial system was 38.94% compared to 29.45% for the single bacterial system at the same biomass. The mixed bacterial consortium was able to resist SMX at concentrations up to 400 mg/L and maintained a stable microbial structure at different culture conditions. The optimum conditions found for SMX degradation were 30 °C, pH 7.0, a shaking speed of 160 r·min−1, and an initial SMX concentration of 200 mg·L−1. The degradation of SMX was accelerated by the addition of YL2 for its ability to metabolize the key intermediate, 4-aminophenol. The removal rate of 4-aminophenol by strain YL2 reached 19.54% after 5 days. Genome analysis revealed that adding riboflavin and enhancing the reducing capacity might contribute to the degradation of SMX. These results indicated that it is important for the bioremediation of antibiotic-contaminated aquatic systems to understand the metabolism of bacterial communities.
Funder
National Natural Science Foundation of China
Subject
Virology,Microbiology (medical),Microbiology
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献