Abstract
Microorganisms are diverse and play key roles in lake ecosystems, therefore, a robust estimation of their biodiversity and community structure is crucial for determining their ecological roles in lakes. Conventionally, molecular surveys of microorganisms in lakes are primarily based on equidistant sampling. However, this sampling strategy overlooks the effects of environmental heterogeneity and trophic status in lake ecosystems, which might result in inaccurate biodiversity assessments of microorganisms. Here, we conducted equidistant sampling from 10 sites in two regions with different trophic status within East Lake (Wuhan, China), to verify the reliability of this sampling strategy and assess the influence of environmental heterogeneity and trophic status on this strategy. Rarefaction curves showed that the species richness of microbial communities in the region of the lake with higher eutrophication failed to reach saturation compared with that in lower trophic status. The microbial compositions of samples from the region with higher trophic status differed significantly (P < 0.05) from those in the region with lower trophic status. The result of this pattern may be explained by complex adaptations of lake microorganisms in high eutrophication regions with environmental conditions, where community differentiation can be viewed as adaptations to these environmental selection forces. Therefore, when conducting surveys of microbial biodiversity in a heterogeneous environment, investigators should incorporate intensive sampling to assess the variability in microbial distribution in response to a range of factors in the local microenvironment.
Funder
National Natural Science Foundation of China and Beijing Natural Science Foundation
Subject
Virology,Microbiology (medical),Microbiology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献