Competing Endogenous RNA (ceRNA) Networks and Splicing Switches in Cervical Cancer: HPV Oncogenesis, Clinical Significance and Therapeutic Opportunities

Author:

Basera AfraORCID,Hull RodneyORCID,Demetriou DemetraORCID,Bates David OwenORCID,Kaufmann Andreas MartinORCID,Dlamini ZodwaORCID,Marima RahabaORCID

Abstract

Cervical cancer (CC) is the primary cause of female cancer fatalities in low-middle-income countries (LMICs). Persistent infections from the human papillomavirus (HPV) can result in cervical cancer. However, numerous different factors influence the development and progression of cervical cancer. Transcriptomic knowledge of the mechanisms with which HPV causes cervical cancer pathogenesis is growing. Nonetheless, there is an existing gap hindering the development of therapeutic approaches and the improvement of patient outcomes. Alternative splicing allows for the production of numerous RNA transcripts and protein isoforms from a single gene, increasing the transcriptome and protein diversity in eukaryotes. Cancer cells exhibit astounding transcriptome modifications by expressing cancer-specific splicing isoforms. High-risk HPV uses cellular alternative splicing events to produce viral and host splice variants and proteins that drive cancer progression or contribute to distinct cancer hallmarks. Understanding how viruses utilize alternative splicing to drive pathogenesis and tumorigenesis is essential. Although research into the role of miRNAs in tumorigenesis is advancing, the function of other non-coding RNAs, including lncRNA and circRNA, has been understudied. Through their interaction with mRNA, non-coding RNAs form a network of competing endogenous RNAs (ceRNAs), which regulate gene expression and promote cervical cancer development and advancement. The dysregulated expression of non-coding RNAs is an understudied and tangled process that promotes cervical cancer development. This review will present the role of aberrant alternative splicing and immunosuppression events in HPV-mediated cervical tumorigenesis, and ceRNA network regulation in cervical cancer pathogenesis will also be discussed. Furthermore, the therapeutic potential of splicing disruptor drugs in cervical cancer will be deliberated.

Funder

South African Medical Research Council

National Research Foundation

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3