Pseudomonas protegens FJKB0103 Isolated from Rhizosphere Exhibits Anti-Methicillin-Resistant Staphylococcus aureus Activity

Author:

Zhao Hui,Liu Lu,Yang Lingshuang,Gu Qihui,Li YingORCID,Zhang Jumei,Wu Shi,Chen Moutong,Xie XinqiangORCID,Wu QingpingORCID

Abstract

Staphylococcus aureus is amongst the most virulent pathogens, causing chronic and life-threatening human infections. Methicillin-resistant S. aureus (MRSA) are multidrug-resistant strains, and the ability of forming a biofilm reduces their sensitivity to antibiotics. Thus, the alternative compounds inhibiting both resistant strains and biofilm formation are in high demand. In our study, the strain FJKB0103 was isolated from the rhizosphere of Garcinia mangostana, showing strong anti-MRSA activity. We performed molecular phylogenic analysis, analyzed average nucleotide identity (ANI), in silico DNA-DNA hybridization (isDDH), and biochemical characteristics to identify strain FJKB0103 as Pseudomonas protegens. Herein, the genome of strain FJKB0103 was sequenced and subjected to antiSMASH platform, mutational, and functional analyses. The FJKB0103 draft genome was 6,776,967 bp with a 63.4% G + C content, and 16 potential secondary compound biosynthetic clusters in P. protegens FJKB0103 were predicted. The deletion mutant and complementary analysis suggested that DAPG was the anti-MRSA compound. Further tests showed that MRSA strains were sensitive to DAPG, and the lysis of bacterial cells was observed at a high concentration of DAPG. Additionally, DAPG inhibited the biofilm formation of MRSA at subinhibitory concentration. These results suggested that DAPG might be a good alternative treatment to control infections caused by MRSA.

Funder

Hui Zhao

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Paenibacillus soyae sp. nov., isolated from the rhizosphere of soya bean;International Journal of Systematic and Evolutionary Microbiology;2023-04-05

2. Flavobacterium soyae sp. nov., isolated from the rhizosphere of soya bean;International Journal of Systematic and Evolutionary Microbiology;2022-09-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3