Effect of AM Fungi Inoculation on Litter Bacterial Community Characteristics under Heavy Metal Stress

Author:

Jia Tong,Wang Yu,Liang Xiaoxia,Guo Tingyan

Abstract

Because microorganisms are the primary driving force behind litter decomposition, they play an important role in maintaining ecosystem material and chemical cycling. Arbuscular mycorrhizal (AM) fungi can improve host plant tolerance to various environmental stressors, making their application in mining area remediation important. In this study, litter from the dominant plant species (Imperata cylindrica) in a copper tailings mining area was selected as the experimental material. We conducted a greenhouse-based heavy metal stress experiment to investigate how AM fungi affect litter microbial community characteristics and key ecological factors. Results showed that AM fungi species, heavy metal treatments, and their combined interaction had significant impacts on litter pH. Additionally, enzyme activities in litter were significantly affected by interactions between AM fungi species and heavy metal contaminates. Ralstonia was significantly positively correlated to lead (Pb) content, indicating that Ralstonia had a certain tolerance to Pb pollution. Sucrase and urease activity were increased when plants were inoculated with Rhizophagus irregularis under Pb stress. Furthermore, Microbacterium, Brevundimonas, and Pseudonocardia all may play important roles in litter decomposition, while a certain tolerance was observed in Kushneria and Roseivivax to heavy metal pollution when plants were inoculated with Glomus mosseae. Results showed that AM fungi affected litter bacterial community structure and function by influencing plant litter properties. By exploring interactions between AM fungi and bacterial communities in plant litter under heavy metal stress, we will better understand associative processes that promote the cycling of soil organic matter and nutrients contaminated by non-ferrous metal tailings.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3