Author:
Jia Tong,Wang Yu,Liang Xiaoxia,Guo Tingyan
Abstract
Because microorganisms are the primary driving force behind litter decomposition, they play an important role in maintaining ecosystem material and chemical cycling. Arbuscular mycorrhizal (AM) fungi can improve host plant tolerance to various environmental stressors, making their application in mining area remediation important. In this study, litter from the dominant plant species (Imperata cylindrica) in a copper tailings mining area was selected as the experimental material. We conducted a greenhouse-based heavy metal stress experiment to investigate how AM fungi affect litter microbial community characteristics and key ecological factors. Results showed that AM fungi species, heavy metal treatments, and their combined interaction had significant impacts on litter pH. Additionally, enzyme activities in litter were significantly affected by interactions between AM fungi species and heavy metal contaminates. Ralstonia was significantly positively correlated to lead (Pb) content, indicating that Ralstonia had a certain tolerance to Pb pollution. Sucrase and urease activity were increased when plants were inoculated with Rhizophagus irregularis under Pb stress. Furthermore, Microbacterium, Brevundimonas, and Pseudonocardia all may play important roles in litter decomposition, while a certain tolerance was observed in Kushneria and Roseivivax to heavy metal pollution when plants were inoculated with Glomus mosseae. Results showed that AM fungi affected litter bacterial community structure and function by influencing plant litter properties. By exploring interactions between AM fungi and bacterial communities in plant litter under heavy metal stress, we will better understand associative processes that promote the cycling of soil organic matter and nutrients contaminated by non-ferrous metal tailings.
Funder
National Natural Science Foundation of China
Subject
Virology,Microbiology (medical),Microbiology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献