New Technique for Enhancing Residual Oil Recovery from Low-Permeability Reservoirs: The Cooperation of Petroleum Hydrocarbon-Degrading Bacteria and SiO2 Nanoparticles

Author:

Cui Kai,Li Hailan,Chen Ping,Li Yong,Jiang Wenxue,Guo Kun

Abstract

Residual crude oil production from low-permeability reservoirs has become a huge challenge because conventional recovery techniques are inefficient. Nanofluids as a new type of oil-displacement agent have become a hot topic in recent years to enhance oil recovery (EOR) in reservoirs. However, the imperfection of agglomeration, dissolution, and instability of nanofluids in reservoir environments limit their ability to drive oil. Here, a novel “microbial-nanofluid” composed of petroleum hydrocarbon-degrading bacteria (PHDB, namely Bacillus cereus) and SiO2 nanoparticles was proposed as a potential new technology for enhancing residual oil recovery. The micromodel displacement test results showed that the optimum composite concentration of “microbial-nanofluids” were PHDB (7.0%, v/v) and SiO2 nanoparticles (100 mg/L), and the residual oil recovery was increased by 30.1% compared with waterflooding (68.8%). Moreover, the morphological characteristics of residual oil mobilization after “microbial-nanofluid” flooding were mainly small and dispersed oil droplets in the excessive areas, and the dead-end areas were almost clean with mobilization. Furthermore, the cooperation mechanism of four kinds of “microbial-nanofluids” to enhance the residual oil recovery in low-permeability reservoirs was preliminarily clarified, namely the co-emulsification of oil, working together to unclog oil clog, microbial-nanofluid self-assembly, and structural disjoining pressure. This study demonstrated that PHDB-SiO2 nanoparticle composite flooding technology provided a significant potential for the EOR from low-permeability reservoirs.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shaanxi Province

China Postdoctoral Science Foundation General Project

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3