Abstract
Facing the crucial issue of high cost in cellulase production from commercial celluloses, inexpensive lignocellulosic materials from agricultural wastes have been attractive. Therefore, several studies have focused on increasing the efficiency of cellulase production by potential microorganisms capable of secreting a high and diversified amount of enzymes using agricultural waste as valuable substrates. Especially, extremophilic bacteria play an important role in biorefinery due to their high value catalytic enzymes that are active even under harsh environmental conditions. Therefore, in this study, we aim to investigate the ability to produce cellulase from coconut-mesocarp of the potential bacterial strain FW2 that was isolated from kitchen food waste in South Korea. This strain was tolerant in a wide range of temperature (−6–75 °C, pH range (4.5–12)) and at high salt concentration up to 35% NaCl. The molecular weight of the purified cellulase produced from strain FW2 was estimated to be 55 kDa. Optimal conditions for the enzyme activity using commercial substrates were found to be 40–50 °C, pH 7.0–7.5, and 0–10% NaCl observed in 920 U/mL of CMCase, 1300 U/mL of Avicelase, and 150 U/mL of FPase. It was achieved in 650 U/mL, 720 U/mL, and 140 U/mL of CMCase, Avicelase, and FPase using coconut-mesocarp, respectively. The results revealed that enzyme production by strain FW2 may have significant commercial values for industry, argo-waste treatment, and other potential applications.
Funder
Rural Development Administration
Subject
Virology,Microbiology (medical),Microbiology
Reference74 articles.
1. A Review on Bacterial Contribution to Lignocellulose Breakdown into Useful Bio-Products
2. Current advances in on-site cellulase production and application on lignocellulosic biomass conversion to biofuels: A review
3. Optimized use of hemicellulose within a biorefinery for processing high value-added xylooligosaccharides
4. The Global Biofuel Enzyme Market Value Is Expected to Reach Nearly $915 Million in 2017
https://www.bccresearch.com/pressroom/egy/global-biofuel-enzyme-market-value-expected-reach-nearly-$915-million-2017
5. Biofuel Enzymes Market Report Biofuel Enzymes Market Analysis by Product (Amylases, Industrial Lipases), by Appli-Cation (Biodiesel, Starch/Corn Based Ethanol, Lignocellulosic Ethanol/Biofuels) and Segment Forecasts to 2020
https://www.grandviewresearch.com/industry-analysis/biofuel-enzymes-market
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献