Evolution of the Inhibitory and Non-Inhibitory ε, ζ, and IF1 Subunits of the F1FO-ATPase as Related to the Endosymbiotic Origin of Mitochondria

Author:

Mendoza-Hoffmann FranciscoORCID,Zarco-Zavala Mariel,Ortega Raquel,Celis-Sandoval Heliodoro,Torres-Larios AlfredoORCID,García-Trejo JoséORCID

Abstract

The F1FO-ATP synthase nanomotor synthesizes >90% of the cellular ATP of almost all living beings by rotating in the “forward” direction, but it can also consume the same ATP pools by rotating in “reverse.” To prevent futile F1FO-ATPase activity, several different inhibitory proteins or domains in bacteria (ε and ζ subunits), mitochondria (IF1), and chloroplasts (ε and γ disulfide) emerged to block the F1FO-ATPase activity selectively. In this study, we analyze how these F1FO-ATPase inhibitory proteins have evolved. The phylogeny of the α-proteobacterial ε showed that it diverged in its C-terminal side, thus losing both the inhibitory function and the ATP-binding/sensor motif that controls this inhibition. The losses of inhibitory function and the ATP-binding site correlate with an evolutionary divergence of non-inhibitory α-proteobacterial ε and mitochondrial δ subunits from inhibitory bacterial and chloroplastidic ε subunits. Here, we confirm the lack of inhibitory function of wild-type and C-terminal truncated ε subunits of P. denitrificans. Taken together, the data show that ζ evolved to replace ε as the primary inhibitor of the F1FO-ATPase of free-living α-proteobacteria. However, the ζ inhibitory function was also partially lost in some symbiotic α-proteobacteria and totally lost in some strictly parasitic α-proteobacteria such as the Rickettsiales order. Finally, we found that ζ and IF1 likely evolved independently via convergent evolution before and after the endosymbiotic origin mitochondria, respectively. This led us to propose the ε and ζ subunits as tracer genes of the pre-endosymbiont that evolved into the actual mitochondria.

Funder

National Autonomous University of Mexico

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3