In Situ Genomics and Transcriptomics of SAR202 Subclusters Revealed Subtle Distinct Activities in Deep-Sea Water

Author:

Wei Zhanfei,Li Qingmei,Lu Rui,Zheng Pengfei,Wang Yong

Abstract

Deep-sea water columns are enriched with SAR202 that may conduct detrital matter degradation. There are several subclusters in SAR202, but their subtle differences in geochemical cycles are largely unknown, particularly for their in situ activities in the marine deep zone. Deep-sea DNA/RNA samples obtained from 12 continuous time periods over two days by in situ nucleic acid collection apparatus were used to re-evaluate the ecological functions of each SAR202 subcluster at a depth of ~1000 m in the South China Sea (SCS). Phylogenomics of 32 new SAR202 genomes from the SCS and western Pacific revealed their distribution in five subclusters. Metatranscriptomics analysis showed that the subclusters II and III were the dominant SAR202 groups with higher transcriptional activities in the SCS deep-sea zone than other subclusters. The analyses of functional gene expression further indicated that SAR202 subclusters II and III might be involved in different metabolic pathways in the deep-sea environment. The SAR202 subcluster III might take part in the degradation of deep-sea aromatic compounds. Time-course metagenomics and metatranscriptomics data did not show metabolic correlation of subclusters II and III over two days, suggesting diversified ecological functions of SAR202 subclusters under different organic inputs from the overlying water column. Collectively, our results indicate that the SAR202 subclusters play different roles in organic degradation and have probably undergone subtle and gradual adaptive evolution in the dynamic environment of the deep ocean.

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3