Structural and Functional Dynamics of Staphylococcus aureus Biofilms and Biofilm Matrix Proteins on Different Clinical Materials

Author:

Hiltunen Anna K.,Savijoki KirsiORCID,Nyman Tuula A.ORCID,Miettinen Ilkka,Ihalainen PetriORCID,Peltonen Jouko,Fallarero Adyary

Abstract

Medical device-associated staphylococcal infections are a common and challenging problem. However, detailed knowledge of staphylococcal biofilm dynamics on clinically relevant surfaces is still limited. In the present study, biofilm formation of the Staphylococcus aureus ATCC 25923 strain was studied on clinically relevant materials—borosilicate glass, plexiglass, hydroxyapatite, titanium and polystyrene—at 18, 42 and 66 h. Materials with the highest surface roughness and porosity (hydroxyapatite and plexiglass) did not promote biofilm formation as efficiently as some other selected materials. Matrix-associated poly-N-acetyl-β-(1-6)-glucosamine (PNAG) was considered important in young (18 h) biofilms, whereas proteins appeared to play a more important role at later stages of biofilm development. A total of 460 proteins were identified from biofilm matrices formed on the indicated materials and time points—from which, 66 proteins were proposed to form the core surfaceome. At 18 h, the appearance of several r-proteins and glycolytic adhesive moonlighters, possibly via an autolysin (AtlA)-mediated release, was demonstrated in all materials, whereas classical surface adhesins, resistance- and virulence-associated proteins displayed greater variation in their abundances depending on the used material. Hydroxyapatite-associated biofilms were more susceptible to antibiotics than biofilms formed on titanium, but no clear correlation between the tolerance and biofilm age was observed. Thus, other factors, possibly the adhesive moonlighters, could have contributed to the observed chemotolerant phenotype. In addition, a protein-dependent matrix network was observed to be already well-established at the 18 h time point. To the best of our knowledge, this is among the first studies shedding light into matrix-associated surfaceomes of S. aureus biofilms grown on different clinically relevant materials and at different time points.

Funder

JANE AND AATOS ERKKO FOUNDATION

Academy of Finland

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3