16S rDNA Sequencing-Based Insights into the Bacterial Community Structure and Function in Co-Existing Soil and Coal Gangue

Author:

Ruan Mengying1,Hu Zhenqi2ORCID,Zhu Qi3,Li Yuanyuan2,Nie Xinran1

Affiliation:

1. Institute of Land Reclamation and Ecological Restoration, China University of Mining and Technology-Beijing, Beijing 100083, China

2. China University of Mining and Technology, Xuzhou 221116, China

3. National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China

Abstract

Coal gangue is a solid waste emitted during coal production. Coal gangue is deployed adjacent to mining land and has characteristics similar to those of the soils of these areas. Coal gangue–soil ecosystems provide habitats for a rich and active bacterial community. However, co-existence networks and the functionality of soil and coal gangue bacterial communities have not been studied. Here, we performed Illumina MiSeq high-throughput sequencing, symbiotic network and statistical analyses, and microbial phenotype prediction to study the microbial community in coal gangue and soil samples from Shanxi Province, China. In general, the structural difference between the bacterial communities in coal gangue and soil was large, indicating that interactions between soil and coal gangue are limited but not absent. The bacterial community exhibited a significant symbiosis network in soil and coal gangue. The co-occurrence network was primarily formed by Proteobacteria, Firmicutes, and Actinobacteria. In addition, BugBase microbiome phenotype predictions and PICRUSt bacterial functional potential predictions showed that transcription regulators represented the highest functional category of symbiotic bacteria in soil and coal gangue. Proteobacteria played an important role in various processes such as mobile element pathogenicity, oxidative stress tolerance, and biofilm formation. In general, this work provides a theoretical basis and data support for the in situ remediation of acidified coal gangue hills based on microbiological methods.

Funder

National Key Research and Development Program

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3