Analysis of Microbial Diversity in South Shetland Islands and Antarctic Peninsula Soils Based on Illumina High-Throughput Sequencing and Cultivation-Dependent Techniques

Author:

Cui Siqi1,Du Jie1,Zhu Lin1,Xin Di1,Xin Yuhua2ORCID,Zhang Jianli1ORCID

Affiliation:

1. Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China

2. China General Microbiological Culture Collection Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China

Abstract

To assess the diversity of bacterial taxa in Antarctic soils and obtain novel microbial resources, 15 samples from 3 sampling sites (DIS5, GWS7, FPS10) of South Shetland Islands and 2 sampling sites (APS18, CIS17) of Antarctic Peninsula were collected. High-throughput sequencing (HTS) of 16S rRNA genes within these samples was conducted on an Illumina Miseq platform. A total of 140,303 16S rRNA gene reads comprising 802 operational taxonomic units (OTUs) were obtained. After taxonomic classification, 25 phyla, 196 genera, and a high proportion of unidentified taxa were detected, among which seven phyla and 99 genera were firstly detected in Antarctica. The bacterial communities were dominated by Actinomycetota (40.40%), Pseudomonadota (17.14%), Bacteroidota (10.55%) and Chloroflexota (10.26%). Based on the HTS analyses, cultivation-dependent techniques were optimized to identify the cultivable members. A total of 30 different genera including 91 strains were obtained, the majority of which has previously been reported from Antarctica. However, for the genera Microterricola, Dyadobacter, Filibacter, Duganella, Ensifer, Antarcticirhabdus and Microvirga, this is the first report in Antarctica. In addition, seven strains represented novel taxa, two of which were psychropoilic and could be valuable resources for further research of cold-adaptability and their ecological significance in Antarctica.

Funder

Beijing Natural Science Foundation

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3