Copper-Contaminated Substrate Biosorption by Penicillium sp. Isolated from Kefir Grains

Author:

Oliveira Antonio Ferreira de1,Machado Raquellyne Baia1,Ferreira Adriana Maciel2,Sena Iracirema da Silva3,Silveira Maria Eduarda1,Almeida Ana Maria Santos de1,Braga Francinaldo S.1,Rodrigues Alex Bruno Lobato4,Bezerra Roberto Messias1ORCID,Ferreira Irlon Maciel3ORCID,Florentino Alexandro Cezar14

Affiliation:

1. Ichthyo and Genotoxicity Laboratory, Department of Exact and Technological Sciences, Federal University of Amapá, Rod. JK, km 02, Macapá 68903-419, Brazil

2. Research Laboratory of Drugs, Department of Biological and Health Sciences, Federal University of Amapá, Rod. JK, km 02, Macapá 68903-419, Brazil

3. Laboratory of Biocatalysis and Applied Organic Synthesis, Department of Exact and Technological Sciences, Federal University of Amapá, Rod. JK, km 02, Macapá 68903-419, Brazil

4. Analytical Chemistry Laboratory, Department of Exact and Technological Sciences, Federal University of Amapá, Rod. JK, km 02, Macapá 68903-419, Brazil

Abstract

In this bioremediation study, the fungus Penicillium sp. isolated from kefir grains was evaluated for its resistance to copper in the culture medium. Penicillium sp. was cultivated in liquid medium prepared using 2% malt-agar at pH 7.0. Biomass of the fungus was significantly reduced, but only when 800 mg·L−1 of Cu(NO3)2 copper nitrate was used. The effect on radial growth of the fungus in experiments combining different pH values and the inorganic contaminant showed an inhibition of 73% at pH 4.0, 75% at pH 7.0 and 77% at pH 9.0 in liquid medium. Thus, even though the growth of Penicillium sp. could be inhibited with relatively high doses of copper nitrate, images obtained with scanning electron microscopy showed the preservation of fungal cell integrity. Therefore, it can be concluded that Penicillium sp. isolated from kefir grains can survive while performing bioremediation to minimize the negative effects of copper on the environment through biosorption.

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3