Knocking Down Gm16685 Decreases Liver Granuloma in Murine Schistosomiasis Japonica

Author:

Zhao Ruyu1,Tang Xiaoxue1,Lin Huiyao1,Xing Chen1,Xu Na1,Dai Bingxin1,Wang Pingping1,Shao Wei1ORCID,Liu Miao1,Shen Jijia1,Deng Shengqun1ORCID,Ren Cuiping1

Affiliation:

1. Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, Anhui Key Laboratory of Zoonosis of High Institution, Laboratory of Tropical and Parasitic Diseases Control, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China

Abstract

Long noncoding RNAs (lncRNAs) can regulate key genes and pathways in liver disease development. Moreover, macrophages are speculated to play an important role in regulating granulomatous inflammation during schistosomiasis. However, the role of lncRNAs in the formation of liver granulomas by influencing the polarization of macrophages in Schistosoma japonicum infection is unclear. Our study aimed to determine whether lncRNAs can play a role in S. japonicum-induced hepatic egg granulomas and elucidate their effect on macrophages. We established S. japonicum infection models and screened the target lncRNA Gm16685 highly expressed in schistosomiasis mice using high-throughput sequencing. Hematoxylin and eosin staining revealed that the knockdown of Gm16685 reduced the area of egg granulomas. Moreover, M1 macrophage factor genes were significantly downregulated in Gm16685 knockdown livers. Meanwhile, M2 macrophage factor genes were significantly upregulated, which was consistent with the protein detection results. Hepatocytes, hepatic stellate cells, and macrophages were isolated from mouse models infected with S. japonicum, with Gm16685 being significantly upregulated in macrophages. Moreover, the knockdown of Gm16685 in RAW264.7 cells revealed similar results to in liver tissue. RNA fluorescence in situ hybridization (FISH) and nucleocytoplasmic separation experiments revealed that Gm16685 was predominantly localized in the cytoplasm of cells. We found that miR-205-5p was upregulated after Gm16685 was knocked down. After overexpression of miR-205-5p, the expression of Gm16685 and inflammatory factors was significantly downregulated. These results indicate that Gm16685 can participate in the pathogenesis of hepatic disease in schistosomiasis and promote M1 macrophage polarization by regulating miR-205-5p. Thus, our study may provide a new target for schistosomiasis japonica treatment.

Funder

National Natural Science Foundation of China

Scientific Research of BSKY from Anhui Medical University

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3