Affiliation:
1. Department of Biomedical Engineering, Binghamton University, Binghamton, NY 13902, USA
2. Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY 13902, USA
3. Department of Biological Sciences, Binghamton University, Binghamton, NY 13902, USA
Abstract
Consumed food travels through the gastrointestinal tract to reach the small intestine, where it interacts with the microbiota, forming a complex relationship with the dietary components. Here we present a complex in vitro cell culture model of the small intestine that includes human cells, digestion, a simulated meal, and a microbiota represented by a bacterial community consisting of E. coli, L. rhamnosus, S. salivarius, B. bifidum, and E. faecalis. This model was used to determine the effects of food-grade titanium dioxide nanoparticles (TiO2 NPs), a common food additive, on epithelial permeability, intestinal alkaline phosphatase activity, and nutrient transport across the epithelium. Physiologically relevant concentrations of TiO2 had no effect on intestinal permeability but caused an increase in triglyceride transport as part of the food model, which was reversed in the presence of bacteria. Individual bacterial species had no effect on glucose transport, but the bacterial community increased glucose transport, suggesting a change in bacterial behavior when in a community. Bacterial entrapment within the mucus layer was reduced with TiO2 exposure, which may be due to decreased mucus layer thickness. The combination of human cells, a synthetic meal, and a bacterial mock community provides an opportunity to understand the implications of nutritional changes on small intestinal function, including the microbiota.
Funder
National Institutes of Health
Subject
Virology,Microbiology (medical),Microbiology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献