Biodegradation of Iprodione and Chlorpyrifos Using an Immobilized Bacterial Consortium in a Packed-Bed Bioreactor

Author:

Levío-Raimán MarcelaORCID,Bornhardt Cristian,Diez M. CristinaORCID

Abstract

This work provides the basis for implementing a continuous treatment system using a bacterial consortium for wastewater containing a pesticide mixture of iprodione (IPR) and chlorpyrifos (CHL). Two bacterial strains (Achromobacter spanius C1 and Pseudomonas rhodesiae C4) isolated from the biomixture of a biopurification system were able to efficiently remove pesticides IPR and CHL at different concentrations (10 to 100 mg L−1) from the liquid medium as individual strains and free consortium. The half-life time (T1/2) for IPR and CHL was determined for individual strains and a free bacterial consortium. However, when the free bacterial consortium was used, a lower T1/2 was obtained, especially for CHL. Based on these results, an immobilized bacterial consortium was formulated with each bacterial strain encapsulated individually in alginate beads. Then, different inoculum concentrations (5, 10, and 15% w/v) of the immobilized consortium were evaluated in batch experiments for IPR and CHL removal. The inoculum concentration of 15% w/v demonstrated the highest pesticide removal. Using this inoculum concentration, the packed-bed bioreactor with an immobilized bacterial consortium was operated in continuous mode at different flow rates (30, 60, and 90 mL h−1) at a pesticide concentration of 50 mg L−1 each. The performance in the bioreactor demonstrated that it is possible to efficiently remove a pesticide mixture of IPR and CHL in a continuous system. The metabolites 3,5-dichloroaniline (3,5-DCA) and 3,5,6-trichloro-2-pyridinol (TCP) were produced, and a slight accumulation of TCP was observed. The bioreactor was influenced by TCP accumulation but was able to recover performance quickly. Finally, after 60 days of operation, the removal efficiency was 96% for IPR and 82% for CHL. The findings of this study demonstrate that it is possible to remove IPR and CHL from pesticide-containing wastewater in a continuous system.

Funder

ANID Doctoral Scholarship

ANID FONDECYT

ANID/FONDAP/

DIUFRO

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3