Multi-Generation Ecosystem Selection of Rhizosphere Microbial Communities Associated with Plant Genotype and Biomass in Arabidopsis thaliana

Author:

Shankar Nachiket1ORCID,Shetty Prateek2,Melo Tatiana C.1,Kesseli Rick1

Affiliation:

1. Department of Biology, University of Massachusetts, Boston, MA 02125, USA

2. Institute of Plant Biology, Biological Research Centre, 6726 Szeged, Hungary

Abstract

The role of the microbiome in shaping the host’s phenotype has emerged as a critical area of investigation, with implications in ecology, evolution, and host health. The complex and dynamic interactions involving plants and their diverse rhizospheres’ microbial communities are influenced by a multitude of factors, including but not limited to soil type, environment, and plant genotype. Understanding the impact of these factors on microbial community assembly is key to yielding host-specific and robust benefits for plants, yet it remains challenging. Here, we conducted an artificial ecosystem selection experiment for eight generations of Arabidopsis thaliana Ler and Cvi to select soil microbiomes associated with a higher or lower biomass of the host. This resulted in divergent microbial communities shaped by a complex interplay between random environmental variations, plant genotypes, and biomass selection pressures. In the initial phases of the experiment, the genotype and the biomass selection treatment had modest but significant impacts. Over time, the plant genotype and biomass treatments gained more influence, explaining ~40% of the variation in the microbial community’s composition. Furthermore, a genotype-specific association of plant-growth-promoting rhizobacterial taxa, Labraceae with Ler and Rhizobiaceae with Cvi, was observed under selection for high biomass.

Funder

NSF

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3