Remediation Approaches to Reduce Hydrocarbon Contamination in Petroleum-Polluted Soil

Author:

Elgazali Abdelkareem12,Althalb Hakima3,Elmusrati Izzeddin3,Ahmed Hasna M.3,Banat Ibrahim M.4ORCID

Affiliation:

1. Faculty of Arts and Sciences, Tocra Campus, University of Benghazi, Benghazi P.O. Box 1308, Libya

2. Environmental and Biological Chemistry Research Center (EBCRC), University of Benghazi, Tocra P.O. Box. 9480, Libya

3. Environmental Research Department, Petroleum Research Center, Tripoli P.O. Box 6431, Libya

4. Faculty of Life and Health Sciences, Ulster University, Coleraine BT52 1SA, Northern Ireland, UK

Abstract

Heavy metals pollution associated with oil spills has become a major concern worldwide. It is essential to break down these contaminants in the environment. In the environment, microbes have been used to detoxify and transform hazardous components. The process can function naturally or can be enhanced by adding nutrients, electron acceptors, or other factors. This study investigates some factors affecting hydrocarbon remediation technologies/approaches. Combinations of biological, chemical, and eco-toxicological techniques are used for this process while monitoring the efficacy of bacterial products and nutrient amendments to stimulate the biotransformation of contaminated soil. Different hydrocarbon removal levels were observed with bacterial augmentation (Beta proteobacterium and Rhodococcus ruber), exhibiting a total petroleum hydrocarbon (TPH) reduction of 61%, which was further improved to a 73% reduction using bacterial augmentation combined with nutrient amendment (nitrogen, potassium, and phosphorus). A heavy metal analysis of the polluted soils showed that the combination of nutrient and bacterial augmentation resulted in a significant reduction (p-value < 0.05) in lead, zinc, and barium. Toxicity testing also showed that a reduction of up to 50% was achieved using these remediation approaches.

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3