Effects of Maize–Crop Rotation on Soil Physicochemical Properties, Enzyme Activities, Microbial Biomass and Microbial Community Structure in Southwest China

Author:

Wang Puchang1,Xie Wenhui2,Ding Leilei3ORCID,Zhuo Yingping2,Gao Yang1,Li Junqin1,Zhao Lili2

Affiliation:

1. School of Life Sciences, Guizhou Normal University, Guiyang 550025, China

2. College of Animal Science, Guizhou University, Guiyang 550025, China

3. Guizhou Institute of Prataculture, Guiyang 550006, China

Abstract

Introducing cover crops into maize rotation systems is widely practiced to increase crop productivity and achieve sustainable agricultural development, yet the potential for crop rotational diversity to contribute to environmental benefits in soils remains uncertain. Here, we investigated the effects of different crop rotation patterns on the physicochemical properties, enzyme activities, microbial biomass and microbial communities in soils from field experiments. Crop rotation patterns included (i) pure maize monoculture (CC), (ii) maize–garlic (CG), (iii) maize–rape (CR) and (iv) maize–annual ryegrass for one year (Cir1), two years (Cir2) and three years (Cir3). Our results showed that soil physicochemical properties varied in all rotation patterns, with higher total and available phosphorus concentrations in CG and CR and lower soil organic carbon and total nitrogen concentrations in the maize–ryegrass rotations compared to CC. Specifically, soil fertility was ranked as CG > Cir2 > CR > Cir3 > CC > Cir1. CG decreased enzyme activities but enhanced microbial biomass. Cir2 decreased carbon (C) and nitrogen (N) acquiring enzyme activities and soil microbial C and N concentrations, but increased phosphorus (P) acquiring enzyme activities and microbial biomass P concentrations compared to CC. Soil bacterial and fungal diversity (Shannon index) were lower in CG and Cir2 compared to CC, while the richness (Chao1 index) was lower in CG, CR, Cir1 and Cir2. Most maize rotations notably augmented the relative abundance of soil bacteria, including Chloroflexi, Gemmatimonadetes and Rokubacteria, while not necessarily decreasing the abundance of soil fungi like Basidiomycota, Mortierellomycota and Anthophyta. Redundancy analysis indicated that nitrate-N, ammonium-N and microbial biomass N concentrations had a large impact on soil bacterial communities, whereas nitrate-N and ammonium-N, available P, soil organic C and microbial biomass C concentrations had a greater effect on soil fungal communities. In conclusion, maize rotations with garlic, rape and ryegrass distinctly modify soil properties and microbial compositions. Thus, we advocate for garlic and annual ryegrass as maize cover crops and recommend a two-year rotation for perennial ryegrass in Southwest China.

Funder

National Natural Science Foundation of China

Projects of Science and Technology of Guizhou Province

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3