Identification of Fungicide Combinations Targeting Plasmopara viticola and Botrytis cinerea Fungicide Resistance Using Machine Learning

Author:

Zhang Junrui1,Fernando Sandun D.1ORCID

Affiliation:

1. Biological and Agricultural Engineering Department, Texas A&M University, College Station, TX 77843-2117, USA

Abstract

Downy mildew (caused by Plasmopara viticola) and gray mold (caused by Botrytis cinerea) are fungal diseases that significantly impact grape production globally. Cytochrome b plays a significant role in the mitochondrial respiratory chain of the two fungi that cause these diseases and is a key target for quinone outside inhibitor (QoI)-based fungicide development. Since the mode of action (MOA) of QoI fungicides is restricted to a single active site, the risk of developing resistance to these fungicides is deemed high. Consequently, using a combination of fungicides is considered an effective way to reduce the development of QoI resistance. Currently, there is little information available to help in the selection of appropriate fungicides. This study used a combination of in silico simulations and quantitative structure–activity relationship (QSAR) machine learning algorithms to screen the most potent QoI-based fungicide combinations for wild-type (WT) and the G143A mutation of fungal cytochrome b. Based on in silico studies, mandestrobin emerged as the top binder for both WT Plasmopara viticola and WT Botrytis cinerea cytochrome b. Famoxadone appeared to be a versatile binder for G143A-mutated cytochrome b of both Plasmopara viticola and Botrytis cinerea. Thiram emerged as a reasonable, low-risk non-QoI fungicide that works on WT and G143A-mutated versions of both fungi. QSAR analysis revealed fenpropidin, fenoxanil, and ethaboxam non-QoIs to have a high affinity for G143A-mutated cytochrome b of Plasmopara viticola and Botrytis cinerea. Above-QoI and non-QoI fungicides can be considered for field studies in a fungicide management program against Plasmopara viticola- and Botrytis cinerea-based fungal infections.

Funder

Texas A&M AgriLife Research

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Reference37 articles.

1. FAO (2020). FAOSTAT Statistical Database.

2. Fruit and Tree Nuts Outlook: September 2021;Kramer;US Dept. Agr. Econ. Res. Serv.,2021

3. Murray, R.E., Candan, A.P., and Vazquez, D.E. (2019). Manual de Poscosecha de Frutas: Manejo Integrado de Patógenos, Ediciones INTA.

4. Kassemeyer, H.-H. (2017). Biology of Microorganisms on Grapes, in Must and in Wine, Springer.

5. Evaluation of a dynamic model for primary infections caused by Plasmopara viticola on grapevine in Quebec;Caffi;Plant Health Prog.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3