Changes to Soil Microbiome Resulting from Synergetic Effects of Fungistatic Compounds Pyrimethanil and Fluopyram in Lowbush Blueberry Agriculture, with Nine Fungicide Products Tested

Author:

Lloyd Austin W.1,Percival David1,Langille Morgan G. I.2,Yurgel Svetlana N.3

Affiliation:

1. Department of Plant, Food, and Environmental Sciences, Dalhousie University, Truro, NS B2N 5E3, Canada

2. Department of Pharmacology, Dalhousie University, Halifax, NS B2N 5E3, Canada

3. USDA, ARS, Grain Legume Genetics and Physiology Research Unit, Prosser, WA 99350, USA

Abstract

Lowbush blueberries (Vaccinium spp.) are a crop of economic significance to Atlantic Canada, Quebec, and Maine. The fruit is produced by the management of naturally occurring plant populations. The plants have an intimate relationship with the soil microbiome and depend on it for their health and productivity. Fungicides are an important tool in combatting disease pressure but pose a potential risk to soil health. In this study, amplicon sequencing was used to determine the effects of six fungistatic compounds both alone and in combination via nine commercially available fungicide products on the bacterial and fungal microbiomes associated with lowbush blueberries and to study whether these effects are reflected in crop outcomes and plant phenotypes. One fungicide, Luna Tranquility, a combination of fluopyram and pyrimethanil, was found to impart significant effects to fungal and bacterial community structure, fungal taxonomic abundances, and bacterial functions relative to control. The two fungicides which contained fluopyram and pyrimethanil as single ingredients (Velum Prime and Scala, respectively) did not induce significant changes in any of these regards. These results suggest the possibility that these microbiome changes are the result of the synergistic effect of fluopyram and pyrimethanil on soil microbiomes. While these results suggest a significant disruption to the soil microbiome, no corresponding changes to crop development and outcomes were noted. Ultimately, the majority of the fungicides analysed in this trial did not produce significant changes to the soil microbiome relative to the untreated group (UTG). However, one of the fungicide treatments, Luna Tranquility, did produce significant changes to the soil ecosystem that could have longer-term effects on soil health and its future use may merit additional investigation onto its ecotoxicological properties.

Funder

Natural Sciences and Engineering Research Council of Canada Discovery Grant

Natural Sciences and Engineering Research Council of Canada Collaborative Research and Development Grant

the Wild Blueberry Producers Association of Nova Scotia

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3