Soil Bacterial Diversity Responds to Long-Term Establishment of Perennial Legumes in Warm-Season Grassland at Two Soil Depths

Author:

Erhunmwunse Adesuwa Sylvia12,Guerra Victor Alonso12,Liu Jung-Chen12ORCID,Mackowiak Cheryl L.12ORCID,Blount Ann Rachel Soffes1,Dubeux José Carlos Batista3ORCID,Liao Hui-Ling12ORCID

Affiliation:

1. North Florida Research and Education Center, University of Florida, 155 Research Road, Quincy, FL 32351, USA

2. Soil, Water and Ecosystem Sciences Department, University of Florida, Gainesville, FL 32611, USA

3. North Florida Research and Education Center, University of Florida, 3925 Highway 71, Marianna, FL 32446, USA

Abstract

The introduction of rhizoma peanut (RP Arachis glabrata Benth) into bahiagrass (Paspalum notatum Flüggé) may require time to develop stable plant–soil microbe interactions as the microbial legacy of the previous plant community may be long-lasting. A previous study showed that <2 years of introducing rhizoma peanut into bahiagrass pastures minimally affected soil bacterial diversity and community composition. In this study, we compared the effects of the long-term inclusion of rhizoma peanut (>8 years) into bahiagrass on soil bacterial diversity and community composition against their monocultures at 0 to 15 and 15 to 30 cm soil depths using next-generation sequencing to target bacterial 16S V3–V4 regions. We observed that a well-established RP–bahiagrass mixed stand led to a 36% increase in bacterial alpha diversity compared to the bahiagrass monoculture. There was a shift from a soil bacterial community dominated by Proteobacteria (~26%) reported in other bahiagrass and rhizoma peanut studies to a soil bacterial community dominated by Firmicutes (39%) in our study. The relative abundance of the bacterial genus Crossiella, known for its antimicrobial traits, was enhanced in the presence of RP. Differences in soil bacterial diversity and community composition were substantial between 0 to 15 and 15 to 30 cm soil layers, with N2-fixing bacteria belonging to the phylum Proteobacteria concentrated in 0 to 15 cm. Introducing RP into bahiagrass pastures is a highly sustainable alternative to mineral N fertilizer inputs. Our results provide evidence that this system also promotes greater soil microbial diversity and is associated with unique taxa that require further study to better understand their contributions to healthy pastures.

Funder

U.S. Department of Agriculture

United States Department of Agriculture-National Institute of Food and Agriculture

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3