Isolation and Identification of Biocontrol Bacteria against Atractylodes Chinensis Root Rot and Their Effects

Author:

Luo Shouyang1,Tian Chunjie1ORCID,Zhang Hengfei12,Yao Zongmu1,Guan Zhihui1,Li Yingxin1,Zhang Jianfeng2ORCID,Song Yanyu1

Affiliation:

1. Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China

2. Key Laboratory of Straw Comprehensive Utilization and Black Soil, Conservation College of Life Science, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China

Abstract

Fusarium root rot (FRR) seriously affects the growth and productivity of A. chinensis. Therefore, protecting A. chinensis from FRR has become an important task, especially for increasing A. chinensis production. The purpose of this study was to screen FRR control strains from the A. chinensis rhizosphere soil. Eighty-four bacterial strains and seven fungal strains were isolated, and five strains were identified with high inhibitory effects against Fusarium oxysporum (FO): Trichoderma harzianum (MH), Bacillus amyloliquefaciens (CJ5, CJ7, and CJ8), and Bacillus subtilis (CJ9). All five strains had high antagonistic effects in vitro. Results showed that MH and CJ5, as biological control agents, had high control potential, with antagonistic rates of 86.01% and 82.78%, respectively. In the pot experiment, the growth levels of roots and stems of A. chinensis seedlings treated with MH+CJ were significantly higher than those of control plants. The total nitrogen, total phosphorus, total potassium, indoleacetic acid, and chlorophyll contents in A. chinensis leaves were also significantly increased. In the biocontrol test, the combined MH + CJ application significantly decreased the malondialdehyde content in A. chinensis roots and significantly increased the polyphenol oxidase, phenylalanine ammonolyase, and peroxidase ability, indicating a high biocontrol effect. In addition, the application of Bacillus spp. and T. harzianum increased the abundance and diversity of the soil fungal population, improved the soil microbial community structure, and significantly increased the abundance of beneficial strains, such as Holtermanniella and Metarhizium. The abundance of Fusarium, Volutella, and other pathogenic strains was significantly reduced, and the biocontrol potential of A. chinensis root rot was increased. Thus, Bacillus spp. and T. harzianum complex bacteria can be considered potential future biocontrol agents for FRR.

Funder

Jilin Scientific and Technological Development

National Natural Science Foundation of China

Innovation Team Project of Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3