Salinity-Induced Physiochemical Alterations to Enhance Lipid Content in Oleaginous Microalgae Scenedesmus sp. BHU1 via Two-Stage Cultivation for Biodiesel Feedstock

Author:

Singh Rahul Prasad1ORCID,Yadav Priya1,Kumar Ajay2ORCID,Hashem Abeer3,Avila-Quezada Graciela Dolores4ORCID,Abd_Allah Elsayed Fathi5ORCID,Gupta Rajan Kumar1ORCID

Affiliation:

1. Laboratory of Algal Research, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India

2. Amity Institute of Biotechnology, Amity University, Noida 201303, India

3. Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia

4. Facultad de Ciencias Agrotecnológicas, Universidad Autónoma de Chihuahua, Chihuahua 31350, Mexico

5. Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia

Abstract

In the recent past, various microalgae have been considered a renewable energy source for biofuel production, and their amount and extent can be enhanced by applying certain types of stress including salinity. Although microalgae growing under salinity stress result in a higher lipid content, they simultaneously reduce in growth and biomass output. To resolve this issue, the physiochemical changes in microalgae Scenedesmus sp. BHU1 have been assessed through two-stage cultivation. In stage-I, the maximum carbohydrate and lipid contents (39.55 and 34.10%) were found at a 0.4 M NaCl concentration, while in stage-II, the maximum carbohydrate and lipid contents (42.16 and 38.10%) were obtained in the 8-day-old culture. However, under increased salinity, Scenedesmus sp. BHU1 exhibited a decrease in photosynthetic attributes, including Chl-a, Chl-b, Fv/Fm, Y(II), Y(NPQ), NPQ, qP, qL, qN, and ETRmax but increased Y(NO) and carotenoids content. Apart from physiological attributes, osmoprotectants, stress biomarkers, and nonenzymatic antioxidants were also studied to elucidate the role of reactive oxygen species (ROS) facilitated lipid synthesis. Furthermore, elemental and mineral ion analysis of microalgal biomass was performed to evaluate the biomass quality for biofuel and cell homeostasis. Based on fluorometry analysis, we found the maximum neutral lipids in the 8-day-old grown culture at stage-II in Scenedesmus sp. BHU1. Furthermore, the use of Fourier-transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectroscopy analyses confirmed the presence of higher levels of hydrocarbons and triacylglycerides (TAGs) composed of saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs) in the 8-day-old culture. Therefore, Scenedesmus sp. BHU1 can be a promising microalga for potential biodiesel feedstock.

Funder

King Saud University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3