Effect of Anthropogenic Disturbances on the Microbial Relationship during Bioremediation of Heavy Metal-Contaminated Sediment

Author:

Yang Quanliu1,Jie Shiqi2,Lei Pan2,Gan Min2,He Peng2,Zhu Jianyu2ORCID,Zhou Qingming1

Affiliation:

1. College of Agronomy, Hunan Agricultural University, Changsha 410128, China

2. School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China

Abstract

Soil, sediment, and waters contaminated with heavy metals pose a serious threat to ecosystem function and human health, and microorganisms are an effective way to address this problem. In this work, sediments containing heavy metals (Cu, Pb, Zn, Mn, Cd, As) were treated differently (sterilized and unsterilized) and bio-enhanced leaching experiments were carried out with the addition of exogenous iron-oxidizing bacteria A. ferrooxidans and sulfur-oxidizing bacteria A. thiooxidans. The leaching of As, Cd, Cu, and Zn was higher in the unsterilized sediment at the beginning 10 days, while heavy metals leached more optimally in the later sterilized sediment. The leaching of Cd from sterilized sediments was favored by A. ferrooxidans compared to A. thiooxidans. Meanwhile, the microbial community structure was analyzed using 16S rRNA gene sequencing, which revealed that 53.4% of the bacteria were Proteobacteria, 26.22% were Bacteroidetes, 5.04% were Firmicutes, 4.67% were Chlamydomonas, and 4.08% were Acidobacteria. DCA analysis indicated that microorganisms abundance (diversity and Chao values) increased with time. Furthermore, network analysis showed that complex networks of interactions existed in the sediments. After adapting to the acidic environmental conditions, the growth of some locally dominant bacteria increased the microbial interactions, allowing more bacteria to participate in the network, making their connections stronger. This evidence points to a disruption in the microbial community structure and its diversity following artificial disturbance, which then develops again over time. These results could contribute to the understanding of the evolution of microbial communities in the ecosystem during the remediation of anthropogenically disturbed heavy metals.

Funder

National Natural Science Foundation of China

the Major project of Science and Technology of Guizhou Branch of China National Tobacco Corporation

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3