Affiliation:
1. College of Agronomy, Hunan Agricultural University, Changsha 410128, China
2. School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China
Abstract
Soil, sediment, and waters contaminated with heavy metals pose a serious threat to ecosystem function and human health, and microorganisms are an effective way to address this problem. In this work, sediments containing heavy metals (Cu, Pb, Zn, Mn, Cd, As) were treated differently (sterilized and unsterilized) and bio-enhanced leaching experiments were carried out with the addition of exogenous iron-oxidizing bacteria A. ferrooxidans and sulfur-oxidizing bacteria A. thiooxidans. The leaching of As, Cd, Cu, and Zn was higher in the unsterilized sediment at the beginning 10 days, while heavy metals leached more optimally in the later sterilized sediment. The leaching of Cd from sterilized sediments was favored by A. ferrooxidans compared to A. thiooxidans. Meanwhile, the microbial community structure was analyzed using 16S rRNA gene sequencing, which revealed that 53.4% of the bacteria were Proteobacteria, 26.22% were Bacteroidetes, 5.04% were Firmicutes, 4.67% were Chlamydomonas, and 4.08% were Acidobacteria. DCA analysis indicated that microorganisms abundance (diversity and Chao values) increased with time. Furthermore, network analysis showed that complex networks of interactions existed in the sediments. After adapting to the acidic environmental conditions, the growth of some locally dominant bacteria increased the microbial interactions, allowing more bacteria to participate in the network, making their connections stronger. This evidence points to a disruption in the microbial community structure and its diversity following artificial disturbance, which then develops again over time. These results could contribute to the understanding of the evolution of microbial communities in the ecosystem during the remediation of anthropogenically disturbed heavy metals.
Funder
National Natural Science Foundation of China
the Major project of Science and Technology of Guizhou Branch of China National Tobacco Corporation
Subject
Virology,Microbiology (medical),Microbiology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献