Functional Characterization of a Novel SMR-Type Efflux Pump RanQ, Mediating Quaternary Ammonium Compound Resistance in Riemerella anatipestifer

Author:

Quan Heng12,Gong Xiaowei2,Chen Qiwei2ORCID,Zheng Fuying2,Yu Yongfeng2ORCID,Liu Donghui12,Wang Wenhui1,Chu Yuefeng2

Affiliation:

1. College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China

2. State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China

Abstract

Riemerella anatipestifer (R. anatipestifer) is a multidrug-resistant bacterium and an important pathogen responsible for major economic losses in the duck industry. Our previous study revealed that the efflux pump is an important resistance mechanism of R. anatipestifer. Bioinformatics analysis indicated that the GE296_RS02355 gene (denoted here as RanQ), a putative small multidrug resistance (SMR)-type efflux pump, is highly conserved in R. anatipestifer strains and important for the multidrug resistance. In the present study, we characterized the GE296_RS02355 gene in R. anatipestifer strain LZ-01. First, the deletion strain RA-LZ01ΔGE296_RS02355 and complemented strain RA-LZ01cΔGE296_RS02355 were constructed. When compared with that of the wild-type (WT) strain RA-LZ01, the mutant strain ΔRanQ showed no significant influence on bacterial growth, virulence, invasion and adhesion, morphology biofilm formation ability, and glucose metabolism. In addition, the ΔRanQ mutant strain did not alter the drug resistance phenotype of the WT strain RA-LZ01 and displayed enhanced sensitivity toward structurally related quaternary ammonium compounds, such as benzalkonium chloride and methyl viologen, which show high efflux specificity and selectivity. This study may help elucidate the unprecedented biological functions of the SMR-type efflux pump in R. anatipestifer. Thus, if this determinant is horizontally transferred, it could cause the spread of quaternary ammonium compound resistance among bacterial species.

Funder

National Natural Science Foundation of China

Science and Technology Innovation Project, Chinese Academy of Agricultural Sciences

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3