Continuous Production of Ethanol, 1-Butanol and 1-Hexanol from CO with a Synthetic Co-Culture of Clostridia Applying a Cascade of Stirred-Tank Bioreactors

Author:

Bäumler Miriam1ORCID,Burgmaier Veronika1,Herrmann Fabian1,Mentges Julian1,Schneider Martina2,Ehrenreich Armin2ORCID,Liebl Wolfgang2ORCID,Weuster-Botz Dirk1ORCID

Affiliation:

1. Chair of Biochemical Engineering, Department of Energy and Process Engineering, TUM School of Engineering and Design, Technical University of Munich, 85748 Garching, Germany

2. Chair of Microbiology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany

Abstract

Syngas fermentation with clostridial co-cultures is promising for the conversion of CO to alcohols. A CO sensitivity study with Clostridium kluyveri monocultures in batch operated stirred-tank bioreactors revealed total growth inhibition of C. kluyveri already at 100 mbar CO, but stable biomass concentrations and ongoing chain elongation at 800 mbar CO. On/off-gassing with CO indicated a reversible inhibition of C. kluyveri. A continuous supply of sulfide led to increased autotrophic growth and ethanol formation by Clostridium carboxidivorans even at unfavorable low CO concentrations. Based on these results, a continuously operated cascade of two stirred-tank reactors was established with a synthetic co-culture of both Clostridia. An amount of 100 mbar CO and additional sulfide supply enabled growth and chain elongation in the first bioreactor, whereas 800 mbar CO resulted in an efficient reduction of organic acids and de-novo synthesis of C2-C6 alcohols in the second reactor. High alcohol/acid ratios of 4.5–9.1 (w/w) were achieved in the steady state of the cascade process, and the space-time yields of the alcohols produced were improved by factors of 1.9–5.3 compared to a batch process. Further improvement of continuous production of medium chain alcohols from CO may be possible by applying less CO-sensitive chain-elongating bacteria in co-cultures.

Funder

German Research Foundation (DFG) within the Priority Program InterZell

Research project SynCoClos

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Reference31 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Butanol as a major product during ethanol and acetate chain elongation;Frontiers in Bioengineering and Biotechnology;2023-05-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3