Carbon Emission and Biodiversity of Arctic Soil Microbial Communities of the Novaya Zemlya and Franz Josef Land Archipelagos

Author:

Namsaraev Zorigto12ORCID,Bobrik Anna3ORCID,Kozlova Aleksandra1,Krylova Anastasia1,Rudenko Anastasia12,Mitina Anastasia3,Saburov Aleksandr4,Patrushev Maksim1,Karnachuk Olga5ORCID,Toshchakov Stepan1ORCID

Affiliation:

1. Kurchatov Centre for Genome Research, NRC “Kurchatov Institute”, 123182 Moscow, Russia

2. NBIC Department, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia

3. Soil Science Faculty, Moscow State University, 119991 Moscow, Russia

4. Northern (Arctic) Federal University, 163002 Arkhangelsk, Russia

5. Department of Plant Physiology, Biotechnology, and Bioinformatics, Tomsk State University, 634050 Tomsk, Russia

Abstract

Cryogenic soils are the most important terrestrial carbon reservoir on the planet. However, the relationship between soil microbial diversity and CO2 emission by cryogenic soils is poorly studied. This is especially important in the context of rising temperatures in the high Arctic which can lead to the activation of microbial processes in soils and an increase in carbon input from cryogenic soils into the atmosphere. Here, using high-throughput sequencing of 16S rRNA gene amplicons, we analyzed microbial community composition and diversity metrics in relation to soil carbon dioxide emission, water-extractable organic carbon and microbial biomass carbon in the soils of the Barents Sea archipelagos, Novaya Zemlya and Franz Josef Land. It was found that the highest diversity and CO2 emission were observed on the Hooker and Heiss Islands of the Franz Josef Land archipelago, while the diversity and CO2 emission levels were lower on Novaya Zemlya. Soil moisture and temperature were the main parameters influencing the composition of soil microbial communities on both archipelagos. The data obtained show that CO2 emission levels and community diversity on the studied islands are influenced mostly by a number of local factors, such as soil moisture, microclimatic conditions, different patterns of vegetation and fecal input from animals such as reindeer.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3