Distinct Effects of Chemical Toxicity and Radioactivity on Metabolic Heat of Cultured Cells Revealed by “Isotope-Editing”

Author:

Oertel Jana1,Sachs Susanne1,Flemming Katrin1,Obeid Muhammad Hassan2ORCID,Fahmy Karim13ORCID

Affiliation:

1. Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany

2. Protection and Safety Department, Atomic Energy Commission of Syria, Damascus P.O. Box 6091, Syria

3. Cluster of Excellence Physics of Life, Technische Universität Dresden, 01062 Dresden, Germany

Abstract

Studying the toxicity of chemical compounds using isothermal microcalorimetry (IMC), which monitors the metabolic heat from living microorganisms, is a rapidly expanding field. The unprecedented sensitivity of IMC is particularly attractive for studies at low levels of stressors, where lethality-based data are inadequate. We have revealed via IMC the effect of low dose rates from radioactive β−-decay on bacterial metabolism. The low dose rate regime (<400 µGyh−1) is typical of radioactively contaminated environmental sites, where chemical toxicity and radioactivity-mediated effects coexist without a predominance or specific characteristic of either of them. We found that IMC allows distinguishing the two sources of metabolic interference on the basis of “isotope-editing” and advanced thermogram analyses. The stable and radioactive europium isotopes 153Eu and 152Eu, respectively, were employed in monitoring Lactococcus lactis cultures via IMC. β−-emission (electrons) was found to increase initial culture growth by increased nutrient uptake efficiency, which compensates for a reduced maximal cell division rate. Direct adsorption of the radionuclide to the biomass, revealed by mass spectrometry, is critical for both the initial stress response and the “dilution” of radioactivity-mediated damage at later culture stages, which are dominated by the chemical toxicity of Eu.

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3