The Multiomics Response of Bacillus subtilis to Simultaneous Genetic and Environmental Perturbations

Author:

Liu Li1,Li Gaoyang1,Cao Huansheng1

Affiliation:

1. Division of Natural and Applied Sciences, Duke Kunshan University, Suzhou 215316, China

Abstract

How bacteria respond at the systems level to both genetic and environmental perturbations imposed at the same time is one fundamental yet open question in biology. Bioengineering or synthetic biology provides an ideal system for studying such responses, as engineered strains always have genetic changes as opposed to wildtypes and are grown in conditions which often change during growth for maximal yield of desired products. So, engineered strains were used to address the outstanding question. Two Bacillus subtilis strains (MT1 and MT2) were created previously for the overproduction of N-acetylglucosamine (GlcNAc), which were grown in an environment with a carbon shift from glucose to glucose and xylose in the same culture system. We had four groups: (1) a wildtype (WT) grown with glucose at t1; (2) a WT with glucose and xylose at t2; (3) a mutant (MT1) grown with glucose at t1; and (4) MT1 with glucose and xylose at t2. By measuring transcriptomes and metabolomes, we found that GlcNAc-producing mutants, particularly MT2, had a higher yield of N-acetylglucosamine than WT but displayed a smaller maximum growth rate than the wildtype, despite MT1 reaching higher carrying capacity. Underlying the observed growth, the engineered pathways leading to N-acetylglucosamine had both higher gene expression and associated metabolite concentrations in MT1 than WT at both t1 and t2; in bioenergetics, there was higher energy supply in terms of ATP and GTP, with the energy state metric higher in MT1 than WT at both timepoints. Additionally, most top key precursor metabolites were equally abundant in MT1 and WT at either timepoints. Besides that, one prominent feature was the high consistency between transcriptomics and metabolomics in revealing the response. First, both metabolomes and transcriptomes revealed the same PCA clusters of the four groups. Second, we found that the important functions enriched both by metabolomes and transcriptomes overlapped, such as amino acid metabolism and ABC transport. Strikingly, these functions overlapped those enriched by the genes showing a high (positive or negative) correlation with metabolites. Furthermore, these functions also overlapped the enriched KEGG pathways identified using weighted gene coexpression network analysis. All these findings suggest that the responses to simultaneous genetic and environmental perturbations are well coordinated at the metabolic and transcriptional levels: they rely heavily on bioenergetics, but core metabolism does not differ much, while amino acid metabolism and ABC transport are important. This serves as a design guide for bioengineering, synthetic biology, and systems biology.

Funder

Kunshan Government Research Fund

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3