Oxidative Stress Response and E. coli Biofilm Formation under the Effect of Pristine and Modified Carbon Nanotubes

Author:

Maksimova Yuliya12ORCID,Zorina Anastasiya1,Nesterova Larisa34

Affiliation:

1. Laboratory of Molecular Biotechnology, Institute of Ecology and Genetics of Microorganisms UB RAS, 614081 Perm, Russia

2. Department of Microbiology and Immunology, Perm State University, 614990 Perm, Russia

3. Laboratory of Adaptation of Microorganisms, Institute of Ecology and Genetics of Microorganisms UB RAS, 614081 Perm, Russia

4. Department of Plant Physiology and Soil Ecology, Perm State University, 614990 Perm, Russia

Abstract

The article investigates the expression of oxyR and soxS oxidative stress genes in E. coli under the effect of pristine multi-walled carbon nanotubes (MWCNTs) and pristine single-walled carbon nanotubes (SWCNTs), MWCNTs and SWCNTs functionalized with carboxyl groups (MWCNTs-COOH and SWCNTs-COOH, respectively), SWCNTs functionalized with amino groups (SWCNTs-NH2) and SWCNTs functionalized with octadecylamine (SWCNTs-ODA). Significant differences were found in the expression of the soxS gene, while no changes were observed in the expression level of the oxyR gene. The pro-oxidant effect of SWCNTs, SWCNTs-COOH, SWCNTs-NH2, and SWCNTs-ODA is presented, and the contrary antioxidant effect of pristine MWCNTs and MWCNTs-COOH in the presence of methyl viologen hydrate (paraquat) is shown. The article shows that SWCNTs-COOH, SWCNTs-NH2, and SWCNTs-ODA added to the medium generate the production of reactive oxygen species (ROS) in bacterial cells. SWCNTs-COOH intensified the E. coli biofilm formation, and the biofilm biomass exceeded the control by 25 times. Additionally, it is shown that the rpoS expression increased in response to MWCNTs-COOH and SWCNTs-COOH, and the effect of SWCNTs-COOH was more significant. SWCNTs-COOH and SWCNTs-NH2 initiated an increase in ATP concentration in the planktonic cells and a decrease in the biofilm cells. The atomic force microscopy (AFM) method showed that the volume of E. coli planktonic cells after the exposure to carbon nanotubes (CNTs) decreased compared to that without exposure, mainly due to a decrease in cell height. The absence of a strong damaging effect of functionalized SWCNTs on E. coli K12 cells, both in suspension and in biofilms, is shown. Contact with functionalized SWCNTs initiated the aggregation of the polymeric substances of the biofilms; however, the cells did not lyse. Among the studied CNTs, SWCNTs-COOH caused an increased expression of the soxS and rpoS, the formation of ROS, and stimulation of the biofilm formation.

Funder

RFBR and Perm Territory

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3