Genomic Diversity, Antimicrobial Susceptibility, and Biofilm Formation of Clinical Acinetobacter baumannii Isolates from Horses

Author:

Rühl-Teichner Johanna1,Jacobmeyer Lisa1,Leidner Ursula1,Semmler Torsten2ORCID,Ewers Christa1ORCID

Affiliation:

1. Institute of Hygiene and Infectious Diseases of Animals, Department of Veterinary Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany

2. Genome Sequencing and Epidemiology, Robert Koch Institute, 13353 Berlin, Germany

Abstract

Acinetobacter (A.) baumannii is an opportunistic pathogen that causes severe infections in humans and animals, including horses. The occurrence of dominant international clones (ICs), frequent multidrug resistance, and the capability to form biofilms are considered major factors in the successful spread of A. baumannii in human and veterinary clinical environments. Since little is known about A. baumannii isolates from horses, we studied 78 equine A. baumannii isolates obtained from clinical samples between 2008 and 2020 for their antimicrobial resistance (AMR), clonal distribution, biofilm-associated genes (BAGs), and biofilm-forming capability. Based on whole-genome sequence analyses, ICs, multilocus (ML) and core-genome ML sequence types (STs), and AMR genes were determined. Antimicrobial susceptibility testing was performed by microbroth dilution. A crystal violet assay was used for biofilm quantification. Almost 37.2% of the isolates were assigned to IC1 (10.3%), IC2 (20.5%), and IC3 (6.4%). Overall, the isolates revealed high genomic diversity. We identified 51 different STs, including 22 novel STs (ST1723–ST1744), and 34 variants of the intrinsic oxacillinase (OXA), including 8 novel variants (OXA-970 to OXA-977). All isolates were resistant to ampicillin, amoxicillin/clavulanic acid, cephalexin, cefpodoxime, and nitrofurantoin. IC1-IC3 isolates were also resistant to gentamicin, enrofloxacin, marbofloxacin, tetracycline, and trimethoprim/sulfamethoxazole. All isolates were susceptible to imipenem. Thirty-one multidrug-resistant (MDR) isolates mainly accumulated in the IC1-IC3 groups. In general, these isolates showed less biofilm formation (IC1 = 25.0%, IC2 = 18.4%, IC3 = 15.0%) than the group of non-IC1-IC3 isolates (58.4%). Isolates belonging to the same ICs/STs revealed identical BAG patterns. BAG blp1 was absent in all isolates, whereas bfmR and pgaA were present in all isolates. At the level of the IC groups, the AMR status was negatively correlated with the isolates’ ability to form a biofilm. A considerable portion of equine A. baumannii isolates revealed ICs/STs that are globally present in humans. Both an MDR phenotype and the capability to form biofilms might lead to therapeutic failures in equine medicine, particularly due to the limited availability of licensed drugs.

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Reference57 articles.

1. Batt, C.A., and Tortorello, M.L. (2014). Encyclopedia of Food Microbiology, Elsevier. [2nd ed.].

2. Acinetobacter spp. as nosocomial pathogens: Epidemiology and resistance features;Almasaudi;Saudi J. Biol. Sci.,2018

3. Acinetobacter baumannii: Evolution of a global pathogen;Antunes;Pathog. Dis.,2014

4. Acinetobacter baumannii—A neglected pathogen in veterinary and environmental health in Germany;Wareth;Vet. Res. Commun.,2019

5. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: No ESKAPE;Rice;J. Infect. Dis.,2008

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3