Abstract
Ultrasound attenuation has been recently proposed as a tool to modulate probiotic metabolism. The study aimed to characterize the response of the probiotic Lacticaseibacillus casei ATCC 393 to sonication. Two ultrasound treatments were tested (57 W, duty cycle 50%, 6 or 8 min). Attenuation was assessed as a pH decrease in MRS broth after 6 and 24 h of incubation at 37 °C. Cultivability was evaluated by plate count immediately after sonication and by growth index on overnight cultures. Surface changes were determined by auto-aggregation, hydrophobicity, biofilm production tests, and by membrane damages. The 6 min treatment induced a temporary attenuation, while a prolongated exposure to sonic waves caused major attenuation effects (ΔpH 0.97 after 24 h). Both sonication treatments affected probiotic cultivability with a significant (p < 0.05) reduction of plate counts and an alteration of the growth index. Although auto-aggregation was negatively affected upon sonication, the hydrophobicity and biofilm production were improved with no significant differences (p > 0.05) between the sonicated samples. Moreover, sonicated L. casei ATCC 393 resulted in increased membrane permeability. These results suggest that ultrasound technology can be successfully used to modulate the L. casei ATCC 393 fermentative metabolism and to improve its surface properties.
Subject
Virology,Microbiology (medical),Microbiology
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献