Discovery, Identification, and Insecticidal Activity of an Aspergillus flavus Strain Isolated from a Saline–Alkali Soil Sample

Author:

Song Yuxin1,Liu Xiaoli1,Feng Shirong1,Zhao Kangbo1,Qi Zhijun2,Wu Wenjun23,Xiao Jie1,Xu Hong1,Ran Mingwei1,Qin Baofu1

Affiliation:

1. College of Life Sciences, Northwest A&F University, Xianyang 712100, China

2. College of Plant Protection, Northwest A&F University, Xianyang 712100, China

3. Institute of Pesticides, Northwest A&F University, Xianyang 712100, China

Abstract

Aphids are one of the most destructive pests in agricultural production. In addition, aphids are able to easily develop resistance to chemical insecticides due to their rapid reproduction and short generation periods. To explore an effective and environmentally friendly aphid control strategy, we isolated and examined a fungus with aphid-parasitizing activity. The strain (YJNfs21.11) was identified as Aspergillus flavus by ITS, 28S, and BenA gene sequence analysis. Scanning electron microscopy and transmission electron microscopy revealed that the infection hyphae of ‘YJNfs21.11’ colonized and penetrated the aphid epidermal layer and subsequently colonized the body cavity. Field experiments showed that ‘YJNfs21.11’ and its fermentation products exerted considerable control on aphids, with a corrected efficacy of 96.87%. The lipase, protease, and chitinase secreted by fungi help aphid cuticle degradation, thus assisting spores in completing the infection process. Additionally, changes were observed in the mobility and physical signs of aphids, with death occurring within 60 h of infection. Our results demonstrate that A. flavus ‘YJNfs21.11’ exhibits considerable control on Aphis gossypii Glover and Hyalopterus arundimis Fabricius, making it a suitable biological control agent.

Funder

Science and Technology Department of Shaanxi Province, China

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3