Bioleaching Mercury from Coal with Aspergillus flavus M-3

Author:

Mao Wenqing1,Mei Juan1,He Huan1,Liu Cheng1,Tao Xiuxiang1,Huang Zaixing23

Affiliation:

1. Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China

2. National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, China

3. Department of Civil and Architectural Engineering, University of Wyoming, Laramie, WY 82071, USA

Abstract

This study focuses on the utilization of Aspergillus flavus(M-3) for the bioleaching mercury from coal, offering an alternative and environmentally to its clean utilization. The fungus was isolated from the soil near a high mercury coal mine in Lao Ying Shan (LYS), Guizhou. Utilizing direct mercury analysis, X-ray diffraction (XRD), and Fourier Transform-Infrared (FT-IR) analysis techniques, the transformation of mercury speciation, mineral components, and organic groups in the coal were analyzed before and after the bioleaching process. The findings of the study illustrated that the fungus M-3 exhibited a remarkable capacity for coal bioliquefaction and mercury leaching from LYS coal. Following a 15-day bioleaching process, a remarkable mercury leaching rate of 83.79% was achieved. Various forms of mercury speciation, including residue, organic matter, sulfide-bound, oxide-bound, exchangeable, and carbonate-bound forms, were released from the coal, with leaching rates ranging from 80.41% to 92.60%. XRD analysis indicated that the M-3 strain facilitated the dissolution of coal pyrite and the degradation of macromolecules, effectively loosening the coal structure. FT-IR analysis of raw and residual coal demonstrated the breakdown of the aromatic ring structure and introduced oxygen-containing functional groups by M-3. Overall, this study highlights the efficacy of bioliquefying coal using Aspergillus flavus (M-3) as a method for clean coal utilization while simultaneously bioleaching mercury.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3