The Pangenome of Gram-Negative Environmental Bacteria Hides a Promising Biotechnological Potential

Author:

Covas Cláudia1ORCID,Figueiredo Gonçalo1ORCID,Gomes Margarida1,Santos Tiago1,Mendo Sónia1ORCID,Caetano Tânia S.1ORCID

Affiliation:

1. CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal

Abstract

Secondary metabolites (SMs) from environmental bacteria offer viable solutions for various health and environmental challenges. Researchers are employing advanced bioinformatic tools to investigate less-explored microorganisms and unearth novel bioactive compounds. In this research area, our understanding of SMs from environmental Gram-negative bacteria lags behind that of its Gram-positive counterparts. In this regard, Pedobacter spp. have recently gained attention, not only for their role as plant growth promoters but also for their potential in producing antimicrobials. This study focuses on the genomic analysis of Pedobacter spp. to unveil the diversity of the SMs encoded in their genomes. Among the 41 genomes analyzed, a total of 233 biosynthetic gene clusters (BGCs) were identified, revealing the potential for the production of diverse SMs, including RiPPs (27%), terpenes (22%), hybrid SMs (17%), PKs (12%), NRPs (9%) and siderophores (6%). Overall, BGC distribution did not correlate with phylogenetic lineage and most of the BGCs showed no significant hits in the MIBiG database, emphasizing the uniqueness of the compounds that Pedobacter spp. can produce. Of all the species examined, P. cryoconitis and P. lusitanus stood out for having the highest number and diversity of BGCs. Focusing on their applicability and ecological functions, we investigated in greater detail the BGCs responsible for siderophore and terpenoid production in these species and their relatives. Our findings suggest that P. cryoconitis and P. lusitanus have the potential to produce novel mixtures of siderophores, involving bifunctional IucAC/AcD NIS synthetases, as well as carotenoids and squalene. This study highlights the biotechnological potential of Pedobacter spp. in medicine, agriculture and other industries, emphasizing the need for a continued exploration of its SMs and their applications.

Funder

Fundação para a Ciência e Tecnologia

FCT

FCT/MCTES

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3