Investigation of the Critical Biomass of Acclimated Microbial Communities to High Ammonia Concentrations for a Successful Bioaugmentation of Biogas Anaerobic Reactors with Ammonia Inhibition

Author:

Kalamaras Sotirios D.1ORCID,Christou Maria Lida1,Tzenos Christos A.1,Vasileiadis Sotirios2,Karpouzas Dimitrios G.2,Kotsopoulos Thomas A.1ORCID

Affiliation:

1. Department of Hydraulics, Soil Science and Agricultural Engineering, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

2. Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece

Abstract

This study aimed to investigate the role of the bioaugmented critical biomass that should be injected for successful bioaugmentation for addressing ammonia inhibition in anaerobic reactors used for biogas production. Cattle manure was used as a feedstock for anaerobic digestion (AD). A mixed microbial culture was acclimated to high concentrations of ammonia and used as a bioaugmented culture. Different volumes of bioaugmented culture were injected in batch anaerobic reactors under ammonia toxicity levels i.e., 4 g of NH4+-N L−1. The results showed that injecting a volume equal to 65.62% of the total working reactor volume yielded the best methane production. Specifically, this volume of bioaugmented culture resulted in methane production rates of 196.18 mL g−1 Volatile Solids (VS) and 245.88 mL g−1 VS after 30 and 60 days of AD, respectively. These rates were not significantly different from the control reactors (30d: 205.94 mL CH4 g−1 VS and 60d: 230.26 mL CH4 g−1 VS) operating without ammonia toxicity. Analysis of the microbial community using 16S rRNA gene sequencing revealed the dominance of acetoclastic methanogen members from the genus Methanosaeta in all reactors.

Funder

European Regional Development Fund of the European Union

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3