Biologically Assisted One-Step Synthesis of Electrode Materials for Li-Ion Batteries

Author:

Galezowski Laura1ORCID,Recham Nadir23,Larcher Dominique23,Miot Jennyfer1,Skouri-Panet Fériel1,Ahouari Hania45,Guyot François16

Affiliation:

1. Institut de Minéralogie, Physique des Matériaux et Cosmochimie, Sorbonne Université, Muséum National d’Histoire Naturelle, CNRS UMR, 7590, 75005 Paris, France

2. Laboratoire de Réactivité et Chimie des Solides, CNRS UMR 7314, Université de Picardie Jules Verne, 33 Rue Saint Leu, CEDEX 1, 80039 Amiens, France

3. Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS, 3459, 80039 Amiens, France

4. Université de Lille, UMR CNRS 8516-LASIRE Laboratoire Avancé de Spectroscopie pour les Intéractions, la Réactivité et l’Environnement, 59655 Villeneuve d’Ascq, France

5. Université de Lille, FR 2638-IMEC-Institut Michel-Eugène Chevreul, 59000 Lille, France

6. Institut Universitaire de France (IUF), 75005 Paris, France

Abstract

Mn(II)-oxidizing organisms promote the biomineralization of manganese oxides with specific textures, under ambient conditions. Controlling the phases formed and their texture on a larger scale may offer environmentally relevant routes to manganese oxide synthesis, with potential technological applications, for example, for energy storage. In the present study, we sought to use biofilms to promote the formation of electroactive minerals and to control the texture of these biominerals down to the electrode scale (i.e., cm scale). We used the bacterium Pseudomonas putida strain MnB1 which can produce manganese oxide in a biofilm. We characterized the biofilm–mineral assembly using a combination of electron microscopy, synchrotron-based X-ray absorption spectroscopy, X-ray diffraction, thermogravimetric analysis and electron paramagnetic resonance spectroscopy. Under optimized conditions of biofilm growth on the surface of current collectors, mineralogical characterizations revealed the formation of several minerals including a slightly crystalline MnOx birnessite. Electrochemical measurements in a half-cell against Li(0) revealed the electrochemical signature of the Mn4+/Mn3+ redox couple indicating the electroactivity of the biomineralized biofilm without any post-synthesis chemical, physical or thermal treatment. These results provide a better understanding of the properties of biomineralized biofilms and their possible use in designing new routes for one-pot electrode synthesis.

Funder

Agence Nationale de la Recherche

Institut de physique du globe de Paris

Région Ile de France grant SESAME 2006

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3