Microbial Communities Affected by Hydraulic Fracturing and Environmental Factors within an In Situ Coal Reservoir

Author:

Li Yang123ORCID,Chen Jian12ORCID,Tang Shuheng456,Xi Zhaodong456ORCID

Affiliation:

1. School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China

2. The Key Laboratory of Universities in Anhui Province for Prevention of Mine Geological Disasters, Anhui University of Science and Technology, Huainan 232001, China

3. Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China

4. School of Energy Resource, China University of Geosciences, Beijing 100083, China

5. Key Laboratory of Marine Reservoir Evolution and Hydrocarbon Enrichment Mechanism, Ministry of Education, Beijing 100083, China

6. Key Laboratory of Strategy Evaluation for Shale Gas, Ministry of Land and Resources, Beijing 100083, China

Abstract

The rise of coalbed methane bioengineering enables the conversion and utilization of carbon dioxide through microbial action and the carbon cycle. The environment of underground coal reservoirs is the result of a comprehensive effort by microorganisms. Some studies on reservoir microorganisms have progressed in laboratory conditions. However, it does not replicate the interaction between microorganisms and the environment on site. Hydraulic fracturing is an engineering technology to improve the natural permeability of tight reservoirs and is also a prerequisite for increasing biomethane production. In addition to expanding the pore and fracture systems of coal reservoirs, hydraulic fracturing also improves the living conditions of microbial communities in underground space. The characteristics of microbial communities in the reservoir after hydraulic fracturing are unclear. To this end, we applied the 16S rRNA sequencing technique to coalbed methane production water after hydraulic fracturing south of the Qinshui Basin to analyze the microbial response of the hydraulic fracturing process in the coal reservoir. The diversity of microbial communities associated with organic degradation was improved after hydraulic fracturing in the coal reservoir. The proportion of Actinobacteria in the reservoir water of the study area increased significantly, and the abundance of Aminicenantes and Planctomycetes increased, which do not exist in non-fracturing coalbed methane wells or exist at very low abundance. There are different types of methanogens in the study area, especially in fracturing wells. Ecological factors also determine the metabolic pathway of methanogens in coal seams. After hydraulic fracturing, the impact on the reservoir’s microbial communities remains within months. Hydraulic fracturing can strengthen the carbon circulation process, thereby enhancing the block’s methane and carbon dioxide circulation. The study provides a unique theoretical basis for microbially enhanced coalbed methane.

Funder

National Natural Science Foundation of China

Open Foundation of the Key Laboratory of Universities in Anhui Province for Prevention of Mine Geological Disasters

the NSFC-Shanxi Coal-based Low Carbon Joint Fund of China

Scientific Research Foundation for High-level Talents of Anhui University of Science and Technology

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3