Differences in Juniperus przewalskii Rhizosphere Microbiomes across Age Classes: Community Diversity and Assembly

Author:

Chen Qian1,Li Dengwu1,Luo Na1,Yang Jinyan1

Affiliation:

1. College of Forestry, Northwest A&F University, Xianyang 712100, China

Abstract

Evidence shows that biotic and abiotic factors have apparent diversity at different forest ages, leading to changes in rhizosphere microbiomes. However, the difference in diversity, co-occurrence pattern, and assembly of the rhizosphere microbial community among the different forest ages is still unclear. A total of 24 Juniperus przewalskii rhizosphere soil samples were selected from four representative age classes, using diameter at breast height (DBH) as a proxy for tree age (age class I: 5 < DBH ≤ 12.5 cm, age class II: 12.5 < DBH ≤ 22.5 cm, age class III: 22.5 < DBH ≤ 32.5 cm, and age class IV: DBH > 32.5 cm), and analyzed the structural characteristics of the soil microbial community by high-throughput amplicon sequencing. With the increase in age class, the microbial community α-diversity and β-diversity had an increased trend. The bacterial Shannon index in class II and class III were markedly higher than in class I. From class I to class IV, the relative abundances of dominant phyla such as Actinobacteria and Ascomycota decreased, and the relative abundances of Proteobacteria and Basidiomycota increased in contrast. The complexity and association stability of the bacteria and fungi community network structure increase with forest age. Stochastic processes mediated the assembly of soil bacterial communities, while deterministic processes played a more significant role in the assembly of fungal communities. In addition, the relative importance of deterministic components in the microbial community increased significantly with age class. Random forests suggested that soil pH, plant Shannon–Wiener index (H), and Pielou’s evenness index (J) were the most important driving factors of bacterial and fungal community assembly. Overall, these results provide information useful for understanding the generation and maintenance mechanisms of rhizosphere microbial communities across age classes.

Funder

Northwest Surveying, Planning and Designing Institute, National Forestry and Grassland Administration assistance projects

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3