CRISPR/Cas9-Mediated Multi-Locus Promoter Engineering in ery Cluster to Improve Erythromycin Production in Saccharopolyspora erythraea

Author:

Zhang Xuemei12345,Wang Yan246,Zhang Yue245ORCID,Wang Meng1245

Affiliation:

1. School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China

2. Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China

3. Haihe Laboratory of Synthetic Biology, Tianjin 300308, China

4. Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China

5. Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China

6. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China

Abstract

Erythromycins are a group of macrolide antibiotics produced by Saccharopolyspora erythraea. Erythromycin biosynthesis, which is a long pathway composed of a series of biochemical reactions, is precisely controlled by the type I polyketide synthases and accessary tailoring enzymes encoded by ery cluster. In the previous work, we have characterized that six genes representing extremely low transcription levels, SACE_0716-SACE_0720 and SACE_0731, played important roles in limiting erythromycin biosynthesis in the wild-type strain S. erythraea NRRL 23338. In this study, to relieve the potential bottlenecks of erythromycin biosynthesis, we fine-tuned the expression of each key limiting ery gene by CRISPR/Cas9-mediated multi-locus promoter engineering. The native promoters were replaced with different heterologous ones of various strengths, generating ten engineered strains, whose erythromycin productions were 2.8- to 6.0-fold improved compared with that of the wild-type strain. Additionally, the optimal expression pattern of multiple rate-limiting genes and preferred engineering strategies of each locus for maximizing erythromycin yield were also summarized. Collectively, our work lays a foundation for the overall engineering of ery cluster to further improve erythromycin production. The experience of balancing multiple rate-limiting factors within a cluster is also promising to be applied in other actinomycetes to efficiently produce value-added natural products.

Funder

National Key R&D Program of China

“Major Project” of Haihe Laboratory of Synthetic Biology

Tianjin Synthetic Biotechnology Innovation Capacity Improvement Project

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3