Microbial Consortium HJ-SH with Very High Degradation Efficiency of Phenanthrene

Author:

Chen Rui1,Zhao Zhenhua1,Xu Tao1,Jia Xiaoqiang123ORCID

Affiliation:

1. Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China

2. Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China

3. Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China

Abstract

Phenanthrene (PHE) is one of the model compounds of polycyclic aromatic hydrocarbons (PAHs). In this study, a natural PHE-degrading microbial consortium, named HJ-SH, with very high degradation efficiency was isolated from soil exposed to long-term PHE contamination. The results of GC analysis showed that the consortium HJ-SH degraded 98% of 100 mg/L PHE in 3 days and 93% of 1000 mg/L PHE in 5 days, an efficiency higher than that of any other natural consortia, and even most of the engineered strains and consortia reported so far. Seven dominating strains were isolated from the microbial consortium HJ-SH, named SH-1 to SH-7, which were identified according to morphological observation and 16S rDNA sequencing as Pseudomonas sp., Stenotrophomonas sp., Delftia sp., Pseudomonas sp., Brevundimonas sp., Curtobacterium sp., and Microbacterium sp., respectively. Among all the seven single strains, SH-4 showed the strongest PHE degradation ability, and had the biggest degradation contribution. However, it is very interesting that the microbial consortium can hold its high degradation ability only with the co-existence of all these seven single strains. Moreover, HJ-SH exhibited a very high tolerance for PHE, up to 4.5 g/L, and it can degrade some other typical organic pollutants such as biphenyl, anthracene, and n-hexadecane with the degradation ratios of 93%, 92% and 70%, respectively, under 100 mg/L initial concentration in 5 days. Then, we constructed an artificial consortium HJ-7 consisting of the seven single strains, SH-1 to SH-7. After comparing the degradation ratios, cell growth, and relative degradation rates, it was concluded that the artificial consortium HJ-7 with easier reproducibility, better application stability, and larger room for modification can largely replace the natural consortium HJ-SH. In conclusion, this research provided novel tools and new insights for the bioremediation of PHE and other typical organic pollutants using microbial consortia.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3