The Special and General Mechanism of Cyanobacterial Harmful Algal Blooms

Author:

Cheng Wenduo1,Hwang Somin1,Guo Qisen1,Qian Leyuan1,Liu Weile1,Yu Yang1,Liu Li1,Tao Yi2ORCID,Cao Huansheng1

Affiliation:

1. Division of Natural and Applied Sciences, Duke Kunshan University, 8 Duke Ave, Kunshan 215316, China

2. Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China

Abstract

Cyanobacterial harmful algal blooms (CyanoHABs) are longstanding aquatic hazards worldwide, of which the mechanism is not yet fully understood, i.e., the process in which cyanobacteria establish dominance over coexisting algae in the same eutrophic waters. The dominance of CyanoHABs represents a deviation from their low abundance under conventional evolution in the oligotrophic state, which has been the case since the origin of cyanobacteria on early Earth. To piece together a comprehensive mechanism of CyanoHABs, we revisit the origin and adaptive radiation of cyanobacteria in oligotrophic Earth, demonstrating ubiquitous adaptive radiation enabled by corresponding biological functions under various oligotrophic conditions. Next, we summarize the biological functions (ecophysiology) which drive CyanoHABs and ecological evidence to synthesize a working mechanism at the population level (the special mechanism) for CyanoHABs: CyanoHABs are the consequence of the synergistic interaction between superior cyanobacterial ecophysiology and elevated nutrients. Interestingly, these biological functions are not a result of positive selection by water eutrophication, but an adaptation to a longstanding oligotrophic state as all the genes in cyanobacteria are under strong negative selection. Last, to address the relative dominance of cyanobacteria over coexisting algae, we postulate a “general” mechanism of CyanoHABs at the community level from an energy and matter perspective: cyanobacteria are simpler life forms and thus have lower per capita nutrient demand for growth than coexisting eukaryotic algae. We prove this by comparing cyanobacteria and eukaryotic algae in cell size and structure, genome size, size of genome-scale metabolic networks, cell content, and finally the golden standard—field studies with nutrient supplementation in the same waters. To sum up, the comprehensive mechanism of CyanoHABs comprises a necessary condition, which is the general mechanism, and a sufficient condition, which is the special mechanism. One prominent prediction based on this tentative comprehensive mechanism is that eukaryotic algal blooms will coexist with or replace CyanoHABs if eutrophication continues and goes over the threshold nutrient levels for eukaryotic algae. This two-fold comprehensive mechanism awaits further theoretic and experimental testing and provides an important guide to control blooms of all algal species.

Funder

National Natural Science Foundation of China

Duke Kunshan University Summer Research Scholarships and Signature Work Research Grants

Synear Food Molecular Biology Lab

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3